Multi-agent Environment for Complex SYstems
COsimulation (MECSYCO) - User Guide: Create your own
operations

Benjamin Camus!?, Julien Vaubourg?, Yannick Presse?,
Victorien Elvinger?, Thomas Paris!?, Alexandre Tan?
Vincent Chevrier'?, Laurent Ciarletta!?, Christine Bourjot!»?
YUniversite de Lorraine, CNRS, LORIA UMR 7503,
Vandoeuvre-les-Nancy, F-54506, France.
2INRIA, Villers-les-Nancy, F-54600, France.
mecsyco@Qinria.fr

March 31, 2016

Contents

Introduction 2
1 Operation construction 3
1.1 Dataoperation e 3
1.2 Time operation L L e e 4
Pre-made time operation oo 4

Remark 4

2 Template 6
2.1 Java Example Template: run configuration (with operations) 7
2.2 Java Example Template: Data operation, 9
2.3 Java Example Template: Time operation 10

Introduction

MECSYCO is a platform that allows to use different simulators in one multi-model at the same
time. But simulators do not always use the same type of data for their functioning. For example
a simulator could be sending real value, but the next simulator need event information such as a
Boolean to work or even its proper type (like NetLogoTurtle that belongs to NetLogo).

The operations for data transformation are designed for that issue. It is used by the coupling
artifact, more specifically in the receiver side (see User Guide section ”The coupling artifact”). An
operation is designed specifically to transform simulation data (see User Guide section ”Simulation
data”) sent by a simulator’s output port, into simulation data needed by a simulator’s input port.
There is also the equivalent for time conversion in order to adapt the unit, and then put it to scale.

As a consequence, there is no pre-existing operation and the user should define its own opera-
tion depending on its simulators and models.

Chapter 1

Operation construction

Defining an operation consists of creating and instantiating a class extending the abstract class
EventOperation for data operation, and the abstract class TimeOperation for time operation.
The operation’s designer is free to add attributes and other methods to its operation in order to
parametrize the operation.

1.1 Data operation

In order to transform data, every operation must extend EventOperation and define the follow-
ing method of the EventOperation class:

apply
Parameters:

e aEvent - the event containing the data to process

Returns: the processed event (see User Guide section ”Simulation event”)

apply method in Java implementation
public @Nullable SimulData apply (SimulEvent aEvent)

apply method in C++4 implementation
Not distributed yet

After creating the operation, all you need to do in the multi-model description, is to add it on the
link you want the operation to operate. To do so, add the operation to the CouplingArtifact used
for the link by using this method:

addEventOperation
Parameters:

e aOperation - the operation to be added

addEventOperation method in Java implementation
public void addEventOperation (EventOperation aOperation)

addEventOperation method in C++ implementation
Not distributed yet

1.2 Time operation

In order to put to scale time, every operation must extend TimeOperation and define the fol-
lowing method of the TimeOperation class:

apply
Parameters:

e aTime - the time where the operation should act

Returns: The converted time.

apply method in Java implementation
public double apply (double aTime)

apply method in C++ implementation
Not distributed yet

Then, as for the previous operation, you can add it to the CouplingArtifact used for the link by
using this time, the following method:

addTimeOperation
Parameters:

e aOperation - the operation to be added

addTimeOperation method in Java implementation
public void addTimeOperation (TimeOperation aOperation)

addTimeOperation method in C++4 implementation
Not distributed yet

Pre-made time operation

Some basic operations were already implemented and can be used. Those operations are addition,
division, multiplication and exponential, they use the following constructors:

AdditionTimeOperation constructor in Java implementation
public AdditionTimeOperation (double aOperand)
DivisionTimeOperation constructor in Java implementation
public DivisionTimeOperation (double aDivident)

ExponentTimeOperation constructor in Java implementation
public ExponentTimeOperation (int aPower)

MutliplicationTimeOperation constructor in Java implementation
public MutliplicationTimeOperation (double aTimes)

aOperand: value you want to add (subtract if aOperand is negative).
— > time 4+ aOperand

e aDivident: the value you will use to divide the time (must be different of 0).
— > time/aDivident

e aPower: the power applied to 10.
— > time x 10%Fower

aTimes: the value used to multiply the time.
— > time x al'imes

Remark

You can add as many operations you want, they will be applied in the same order you add them.

Operation can also be combine with DDS for decentralized simulation. You can find more in-
formation about it in the User Guide: MECSYCO-com-dds.

Chapter 2

Template

In this section, we give templates of launcher using time and event operations, template of data
operations and template of time operations. Those template are only for Java using. C++ is not
implemented yet. When we talk about ”flexible” it is just that with this method, you could change
easily the value used for the operation thanks to the constructor. It is not ”flexible” when you
cannot manage these value, as a consequence, the operation will always do one and only one thing.

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

T

79

81

83

85

87

89

91

93

95

97

99

101

103

2.1

import
import
import
import
import
import
import

Java Example Template: run configuration
ations)

mecsyco .
mecsyco.
mecsyco.
mecsyco .
mecsyco .
mecsyco.
mecsyco.

core

core

core
core

.operation.
core.
.operation.
.operation.

.agent.EventMAgent;
core.
core.

coupling.CentralizedEventCouplingArtifact;
exception.CausalityException;
time.AdditionTimeOperation;
time.DivisionTimeOperation;
time.ExponentTimeOperation;
time.MutliplicationTimeOperation;

operation.

public class LauncherWithOperations {
public final static double maxSimulationTime = 10;

public static void main(String args[]) {

J e S LT T E Ry

/**x*% AGENTS & MODEL ARTEFACTS

r—

KRR KR KKK [

// First agent with first model (modell)

EventMAgent agentl = new EventMAgent ("Namel",maxSimulationTime);
MyModellArtefact ModelArtefactl = new MyModellArtefact();
agentl.setModelArtefact (ModelArtefactl);

// Second agent with second model (model2)

EventMAgent agent2 = new EventMAgent ("Name2",maxSimulationTime);
MyModel2Artefact ModelArtefact2 = new MyModel2Artefact ();
agent2.setModelArtefact (ModelArtefact2);

KA KA KRR [
/***% COUPLING ARTEFACTS ##%x/
[AR KK KKK KRR KR K K/

/1y
/7 e

Modell

and
and

Model2

"X" are modell’s state variables (typed Double)
"x" are model2’s state variables (typed Double)
// VWe consider that the port names correspond to the state
// During the simulation,
// with modell.y =

variable with which they are linked
X and Y are exchanged and models states are modified,

model2.Y and model2.x = modell.X

CentralizedEventCouplingArtifact couplingFromiTo2
CentralizedEventCouplingArtifact couplingFrom2Tol
// Agentl will update "y" with the value received
// Agent2 will update "x"
agentl.addInputCouplingArtifact (couplingFrom2Tol ,
agent2.addInputCouplingArtifact (couplingFromiTo2,

with the value received

// Agenti will send

// Agent2 will send "Y" to couplingFrom2Tol

agent1l.addOutputCouplingArtifact (couplingFromiTo2,
agent2.addOutputCouplingArtifact (couplingFrom2Tol,

AR KR KRR KKK R KKK KK %/
/*Kkkkkkkk Dperations kkkaaakkkx/

KRR AR K KR KKK K/

/*
* On the link from X to x,

= new CentralizedEventCouplingArtifact ();
= new CentralizedEventCouplingArtifact();

from couplingFrom2Tol (input events)
from couplingFromiTo2 (input events)
gy
VADH

wxn);

"X" to couplingFromiTo2 (output events)
(output events)

DOY
nyny;

we will put the freshly made DataOperation

* We assume here that the operation do not need parameters

*/
//create the operation

DataOperationTemplate EventOpe=new DataOperationTemplate ();

//add it to the link
couplingFrom1To2.addEventOperation(EventOpe);

/*

* On the link from Y to y,
* (we assume here that the operation do not need
* and all operation to our disposal

*/

//create the operations
TimeOperationTemplate TimeOpel=
AdditionTimeOperation TimeOpe2=new
DivisionTimeOperation TimeOpe3=new
ExponentTimeOperation TimeOpe

we will put the freshly made TimeOperation

parameters)

ew TimeOperationTemplate ();
AdditionTimeOperation(1);
DivisionTimeOperation(2);
ew ExponentTimeOperation(3);

MutliplicationTimeOperation TimeOpe5=new MutliplicationTimeOperation(4);

//add it to the link
couplingFrom2Tol.addTimeOperation(TimeOpel);
couplingFrom2Tol.addTimeOperation(TimeOpe2);
couplingFrom2Tol.addTimeOperation(TimeOpe3);
couplingFrom2Tol.addTimeOperation(TimeOped);
couplingFrom2Tol.addTimeOperation(TimeOpe5);
couplingFrom2Tol.addTimeOperation(TimeOpel);
/%

* the timestamp send by Model2 will then be:
manipulate by the freshly made operation
adding 1 to the previous operation
divide the result by 2
multiply it by 10°3
multiply the latest result by 4

then manipulate the final result, once again,

R

~

by the freshly made operation

(with oper-

119

121

123

125

129

131

133

135

139

141

T
/*%%x MODELS INITIALIZATION *xxx/
KRR KA KKK KKK KKK KKK K/

// Start the simulation softwares associated to modell and model2

// This is not systematically necessary, it depends on the simulation software used
agentl.startModelSoftware ();

agent2.startModelSoftware ();

// Initialize modell and model2 parameters

// e.g. time discretization or constants

// This is not systematically necessary, it depends on the model
String [] args_modell = { "0.001" }

String [] args_model2 = { "0.01" }

agentl.setModelParameters (args_modell);
agent2.setModelParameters (args_model2);

[AR KRR KK KRRk
/*%*% CO-SIMULATION INIT & STARTING %%/
[R R R KR KK KRRk

try {
// Co-initialization with first exchanges
// This is necessary only when the model initial states are co-dependent
agentl.coInitialize();
agent2.colnitialize ();

// Start the co-simulation
agentl.start ();
agent2.start ();

// This should never happen
} catch (CausalityException e) {
e.printStackTrace ();

21

23

25

27

29

31

33

35

37

39

41

43

45

2.2

import
import
import

public
/*

*
*

*

*
*/
pub

¥

/*
* 1
*I
*/
pri
pri

Java Example Template: Data operation

mecsyco.core.operation.event.EventOperation;
mecsyco.core.type.SimulData;
mecsyco.core.type.SimulEvent;

class DataOperationTemplate extends EventOperation{

Constructor

You can have empty, depend on if you want a flexible operation or a fixed one
(fixed because in any case, the operation will be exactly the same)

here, we use a constructor for flexible operation

lic DataOperationTemplate (Typel aVarsl, Type2 aVars2) {
Varsl=aVarsi;
Vars2=aVars2;

mplementation
n the case of flexible, create variable for the operation

vate Typel Varl;
vate Type2 var2;

@Override

pub

lic SimulData apply (SimulEvent aEvent) {
/*the result, can be any SimulData type you want
x(for example, the freshly made type done in the "User Guide: SimulData manipulation"
*/
DataTypeTemplate result;

//extract the simulData from SimulEvent. Instead of SimulData, you can precise
//the exact SimulData type and then use methods you or we had implemented
SimulData data=aEvent.getData();

/*

* Operation you want to do

* For making it flexible, use variables you created (Varsl and Vars 2 here)

* Do not forget to assign the result of the operation in the variable "result"

*/

return result;

21

23

25

27

29

31

33

35

37

2.3

Java Example Template: Time operation

import mecsyco.core.operation.time.TimeOperation;
import mecsyco.core.type.SimulData;
import mecsyco.core.type.SimulEvent;
public class TimeOperationTemplate extends TimeOperation{
/*
* Constructor
* You can have empty, depend on if you want a flexible operation or a fixed one
*x (fixed because in any case, the operation will be exactly the same)
* here, we use a constructor for flexible operation
*/
public TimeOperationTemplate (Typel aVarsl, Type2 aVars2) {
Varsi=aVarsi;
Vars2=aVars2;
¥
/*
*xImplementation
*In the case of flexible, create variable for the operation
*/
private Typel Varl;
private Type2 var2;
@Override
public double apply(double argd) {
//the result, can be any SimulData type you want
Double result;
/%
* Operation you want to do
* For making it flexible, use variable you created (Varsl and Vars 2 here)
* Math operation can be found in java class Math (Math.xxx)
* Don’t forgot to assign the result of the operation in the variable "result"
*/
return result;
¥
}

10

	Introduction
	Operation construction
	Data operation
	Time operation
	Pre-made time operation
	Remark

	Template
	Java Example Template: run configuration (with operations)
	Java Example Template: Data operation
	Java Example Template: Time operation

